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Abstract—Today’s analytics environments are characterized
by a high degree of heterogeneity in terms of data systems,
formats and types of analysis. Many occasions call for rapid,
ad hoc, on demand construction of a data model that represents
(parts of) the data infrastructure of an organization, including
ML tasks. This data model is given to data scientists to play
with (express reports, build ML models, explore, etc.) We
present a novel graph-based conceptual model, the Data Virtual
Machine (DVM) representing data (persistent, transient, derived)
of an organization. A DVM can be built quickly and agilely,
offering schema flexibility. It is amenable to visual interfaces
for schema and query management. Dataframing, a frequent
preprocessing task, is usually carried out by experienced data
engineers employing Python or R: a procedural approach with
all the known drawbacks. Dataframes over DVMs are expressed
declaratively - and visually, via a simple and intuitive tool. This
way, non-IT experts can be involved in dataframing. In addition,
query evaluation takes place within an algebraic framework with
all the known benefits. I.e. a DVM enables the delegation of
data engineering tasks to simpler users. Finally, a DVM offers
a formalism that facilitates data sharing, data portability and a
single view of any entity – because a DVM’s node is an attribute
and an entity at the same time. In this respect, DVMs can
excellently serve as a data virtualization technique, an emerging
trend in the industry. We argue that DVMs can have a significant
practical impact in today’s big data environments.

I. INTRODUCTION

Multiple data systems and analysis platforms need to co-
exist, integrated and federated. While data warehousing is the
usual approach, it is rigid for a rapidly changing data environ-
ment. In addition, [2] discusses the need for techniques that
create late-bound schemas on data that may be persisted but
are processed seldomly, if ever. This need is prevalent when the
data infrastructure is dynamic and analysis purposes change
agilely. For such environments, producing fully-fledged clas-
sical integrated schemas on structured, semi-structured and
unstructured data is not only extremely expensive in terms
of time and resources, but it may also be impossible to
achieve in the time-window of the analysis. An alternative
approach followed in many production environments when
time to build a model or a report is of essence, is the use of a
programming language (e.g. Python) to extract, transform and
assemble data (e.g. a dataframe) within a program in an ad-hoc
fashion. While agility is the clear benefit of this approach, data
exploration for the end-user is non-existent: the creation of a
new dataset requires a new program. An interesting thought is
whether we can find a sweet spot between the two alternatives.

Thus, we state the following high-level research question:
Research question. How can a DB expert agilely and on-
demand create a virtual data layer on top of an organization’s
data infrastructure that can be easily understood and used
by non-DB experts for easy and intuitive data sharing, data
exploration, query formulation and data exporting?

To address this challenge, we propose the Data Virtual
Machine (DVM). A DVM is a graph-based conceptual model
based on entities and attributes – concepts that users under-
stand well. The idea behind a DVM is simple yet powerful:
given a computation P with an output (o1, o2), o1 ∈ A and
o2 ∈ B, where A and B are attribute domains, the output of P
serves as a mapping between A and B. This can be represented
in a graph by two nodes, A and B, and edges between them
representing the mappings as manifested by P ’s output. P can
be an SQL/NoSQL query, a spreadsheet reader, any program.

By providing engineers with an environment where they
can easily (visually) define computations over the data in-
frastructure (relational and non-relational data, streams, stand-
alone programs) the DVM is automatically generated, i.e. the
produced schema reflects a collection of computations (based
on their output). As a result, a DVM can be rapidly, agilely
constructed, on demand. DVM’s approach is different than
traditional data integration techniques which focus on settling
on a schema and either define appropriate data processing tasks
to populate/refresh this schema (data warehousing), or define
wrappers to bind data with a virtual schema (mediators) [17],
[21], [23] - in both cases, existing data is ‘fitted’ to a predefined
schema. In a DVM, the mapping processes (i.e. computations)
determine the schema.

We argued in [11] that a DVM serves practical, real-
world requirements in big data environments, such as: (a)
model simplicity and visual manipulations (schema/query), (b)
schematic agility and flexibility, (c) consistent data sharing
within organizations, (d) intuitive and simple query formula-
tion, especially dataframing, and (e) model polymorphism.

Section II provides intuition for the DVM and formally
defines it. Section III defines DVM dataframe queries and
Section IV proposes an algebraic framework to evaluate them.
Section V discusses query evaluation and optimization of
DVM dataframe queries. Section VI presents a case study as
a proof-of-concept and Section VII surveys related work. We
conclude with Section VIII.



II. DATA VIRTUAL MACHINES

A conceptual model, like the ER, is simple to understand,
succinct, and depicts entities at a higher level. A DVM can
be thought as an altered ER schema [11]–[13], where (a)
all attributes are derived (the computation P binds attribute
value(s) to an entity via its primary attribute) and multi-valued
(to accommodate mapping of multiple attribute values via P
to an entity), (b) entities are represented by their primary
attributes, and (c) binary relationships are represented by
associating the primary attributes of the two entities. In a
DVM, each node can be considered either as an entity or an
attribute, depending the analysis case. However, while ER uses
a top-down approach, from a conceptual design to an actual
data, DVM uses a bottom-up approach, from existing data to
a conceptual model.

A DVM represents a collection of mappings (edges) be-
tween attribute domains (nodes), where mappings are man-
ifested as data processes with a 2-dimensional output (the
attribute domains) over existing data.

Definition 2.1: [Key-list Structure] A key-list structure
(KL-structure) K is a set of (key, list) pairs, K = {(k, Lk)},
where Lk is a list of elements or the empty list and ∀
(k1, Lk1), (k2, Lk2) ∈ K, k1 6= k2. Both keys and elements
of the lists are strings. The set of keys of KL-structure K is
denoted as keys(K); the list of key k of KL-structure K is
denoted as list(k,K). If k /∈ keys(K), the value of list(k,K)
is null. The schema of a KL-structure K, denoted as K(A,B)
consists of two labels, A and B. A is the role of the key and
B is the role of the list in the key-list pairs.
A key-list structure is a multi-map, where mapped values to a
key are organized as a list.

Example 2.1: Figure 1 shows two KL-structures
K1(custID, transID) and K2(transID, custID) in
tabular format.

Definition 2.2: [Data Virtual Machines] Assume a col-
lection A of n domains A1, A2, . . . , An, called attributes.
Assume a collection S of m multisets, S1, S2, . . . , Sm, where
each multiset S has the form: S = {(u, v) : u ∈ Ai, v ∈
Aj , i, j ∈ {1, 2, . . . , n}}, called data processing tasks. For
each such S ∈ {S1, S2, . . . , Sm} we define two key-list
structures, KS

ij and KS
ji as:

KS
ij : for each u in the set {u : (u, v) ∈ S} we define the

list Lu = {v : (u, v) ∈ S} and (u, Lu) is appended to KS
ij .

KS
ji is similarly defined.

The DVM is a multi-graph G = {A,S} constructed as:
• each attribute becomes a node in G
• for each data processing task S we draw two edges Ai →
Aj and Aj → Ai, labeled with KS

ij and KS
ji respectively.

The key-list structure that corresponds to an edge e :Ai → Aj

is denoted as KL(e), with schema (Ai, Aj).
The term data processing task actually refers to its output.

The terms attributes and nodes of a DVM will be used
interchangeably in the remaining of the paper.

Example 2.2: Assume two attributes, custID and
transID and the output of the SQL query "SELECT

Fig. 1. Attributes and edges in DVMs

Fig. 2. A simple DVM example

custID, transID FROM Customers that maps trans-
actions to customers and vice versa. The attributes, edges and
the respective key-list structures are shown in Figure 1.

In the rest of the paper we are going to use the DVM
example of Figure 2. In this example, we assume the fol-
lowing: custID attribute is associated to age and gender
attributes via SQL queries, to comment via a program that
reads in a csv file and outputs (customer id, comment) lines,
to friends via a cypher query over a graph database that
outputs customer id and friend id rows and to transID via
a spreadsheet reader that reads in an excel and outputs the
transaction id and the customer id. The same excel is used
to associate transID to amount and date. DVM’s nodes
connected to multiple (>1) other nodes are shown in different
color and intuitively represent entities.

III. DATAFRAME QUERIES

What kind of queries can we have on top of DVMs?
There is an extended relevant research on query languages
and visual query formulation over ERs, dating back in the
80s [4], [16]. However, defining a generic query language over
DVM is work in progress. In this paper we focus on what data
scientists/statisticians usually do, since this is the target group
of this work. They usually form dataframes in Python, R or
Spark. A dataframe is a table built incrementally, column-by-
column.A column cell may contain an atomic value or a list.
A dataframe usually provides a tabular representation of an
entity and usually serves as input to ML algorithms. There
has been discussion of a similar query class in the past (called
multi-feature queries), both in terms of syntax (proposing SQL
extensions [9], [14]) and evaluation (proposing a relational op-
erator relying in parallel processing and in-memory evaluation
techniques [10]). A dataframe query over a DVM is defined as
a tree, consisting of DVM nodes and edges – not necessarily
a subtree of the DVM. The root node of this tree (any node



of the DVM) corresponds to the key column of the dataframe.
Each additional column corresponds to a subtree of the root
node, evaluated in a specific way.

Example 3.1: Consider the DVM of Figure 2. We form
a dataframe with key (1st column) the custID and ad-
ditional columns her age, gender, average sentiment of
her comments containing the keyword “google”, list of her
friends and total amount of her transactions on May
2019.

Selecting the age and gender should be straightforward
as they are children of custID. All attributes are multi-
valued, which means that several ages or genders may have
been mapped to a custID. So we have to apply an aggregate
function to the attribute before placing it in the dataframe.
This function could be something simple like any() which
picks a random element from a list of values.

In order to compute the average sentiment of a custID’s
comments containing the keyword “google”, we have to first
filter the comments mapped to that custID, creating thus a
new list of comments; then apply some python/R/Java function
for sentiment computation on each comment of that list,
creating another list of numbers; finally, aggregate this list
using the average() function.

For the list of friends of a customer with custID = x, we
can use the list(x,KL(custID → friends).

Finally, we want to compute the total amount of the
customer’s transactions on May of 2019. amount is not an
attribute of custID, but there is a path to it, custID →
transID → amount. So we can make it an attribute of
custID, by replacing the transaction IDs of a customer in
KL(custID → transID) with the amounts corresponding
to each transaction ID in KL(transID → amount). At this
point, a custID is associated to a list of amounts, which
can be reduced using the sum() aggregate function. Before
doing so, we may choose to replace a transaction ID with all
the amounts that correspond to it, or first aggregate the list
of amounts, for example taking the average of the amounts or
choosing a random one using the any() aggregate function.
One can see that expressing an aggregate of aggregates is
simple. In addition, we have to constrain transactions to those
of May 2019, i.e. the date attribute has to be between ‘2019-
05-01’ and ’2019-05-31’. This is a selection condition on
transID attribute, involving one or more of its children.

Figure 3 shows the tree of Example 3.1. Nodes used for
the dataframe’s output are marked. Definition 3.1 specifies a
properly constructed dataframe.

Definition 3.1: [Dataframe Queries] Given a DVM G =
{A,S}, a dataframe query is a tree structure Q, defined as:
• each node N of Q has a name and a label: the name is

unique within Q and the label is an attribute of G; these are
denoted as N.name and N.label respectively

• for each edge N → N ′ in Q, there exists an edge: label(N )
→ label(N ′) in D

• each edge e of Q is annotated with a list of trans-
formations, called the transformations string, denoted as
e.transformations

Fig. 3. An example of a dataframe query

• each node N of Q is annotated with the selection condition,
which is either the special value ‘TRUE’ or a python-
like logical expression, where N and any of N ’s children
may appear as identifiers within this expression;the selection
condition of N is denoted as N.selection

• each node, except the root, has an output label, which has
the value ‘true’ or ‘false’; if the output label of a
node is ‘true’, then all nodes in the path from the root
to that node, except the root, must have a ‘true’ output
label; this output label denoted as N.output
Visual formulation of dataframe queries over DVMs can

be an intuitive and simple task, as demonstrated in [12],
making it a suitable query formulation technique for non-
database experts, such as data scientists/statisticians. One can
also express a dataframe using DVM-QL, a textual query
language. We omit the detailed description of DVM-QL due
to lack of space.

The root of a dataframe query can be any attribute of the
DVM. Implicitly, it represents the entity to be studied. It can be
custID or transID (customer entity or transaction entity)
but it can also be age or date attribute. Being able to easily
express queries for any entity in a virtual schema is one of
the goals of data virtualization. Note that a DVM’s node/edge
could appear multiple times in a dataframe query, even in the
same path (backtracking is allowed).

Example 3.2: Consider once again the DVM of Figure 2.
For each gender we want to compute (in separate columns):
the total number of customers, the average age of the gender’s
customers, the total amount of transactions corresponding to
the gender, and, the average of the number of transactions per
customer of the gender. Figure 4 shows the tree representation
of this query. Nodes in the dataframe’s output are marked.

IV. ALGEBRA OF KEY-LIST STRUCTURES

To evaluate a dataframe query, such as the one in Figure 3,
edges rooted on the same node have to be (conditionally)
combined to a new edge (e.g. combining X5 → X6 and



Fig. 4. Another example of a dataframe query

X5 → X7 to a new edge e), edges along a path have to
be joined (e.g. X0 → X5 and e), and edges have to be
transformed (e.g. the lists of comments per custID, X0→ X3,
have to be filtered to contain the keyword “google”.) We define
a set of algebraic operators that take as input one or more edges
(i.e. key-list structures) and have as output an edge (another
key-list structure.) As a result, dataframe queries are evaluated
and optimized within an algebraic framework (Section V).

A. Transformation Operators

These operators transform the lists of a key-list structure,
producing a new key-list structure. For example one can
filter the elements (strings) of a list according to a condition,
aggregate the elements of a list according to an aggregate
function or apply a function (written in any programming
language as long as it gets a string and returns a string) on
each element of the list, producing a new element. Others (e.g.
sorting list elements) can be defined as well.

Definition 4.1: [Aggregation] We define an operator, called
aggregation, which gets a key-list structure K and an ag-
gregate function f and returns a new key-list structure K ′

constructed as follows: ∀k ∈ keys(K), it adds pair (k, L′k) to
K ′, where L′k = [f(Lk)], i.e. a list with a single element, the
result of the reduced list Lk according to f . We denote this
operator as Aggr(K, f).

The aggregate function f can be one of the built-in functions
(min, max, average, sum, count) or written in any program-
ming language, such as Python or R. An implementation
of this operator should handle polyglotism in terms of f ,
for example have implementations in different programming
languages. Figure 5(a) shows an example of aggregation.

Definition 4.2: [Filtering] We define an operator, called
filtering, which gets a key-list structure K and a condition θ
defined on a single element of a list (a string) and returns a new
key-list structure K ′ constructed as follows: ∀k ∈ keys(K), it
adds to K ′ a pair (k, L′k), where L′k contains all x ∈ Lk such
that θ(x) is true. We denote this operator as Filter(K, θ).
This operator returns a new key-list structure with filtered lists
for each key, according to θ. Figure 5(b) shows an example
of filtering. Note that this operator cannot be used to select
(key, list) pairs in a key-list structure (Section IV-C).

Definition 4.3: [Mapping] We define an operator, called
mapping, which gets a key-list structure K and a function f

Fig. 5. Transformation operators

with signature string f(x:string) and returns a new
key-list structure K ′ constructed as follows: ∀ k ∈ keys(K),
it adds to K ′ a pair (k, L′k), where L′k = [f(x) : x ∈ Lk],
i.e. each element x in Lk is replaced by f(x). We denote this
operator as Map(K, f).

An example is to transform a list of comments to a list of
sentiments, by running sentiment analysis on each comment.
The mapping function f can be written in any programming
language. Figure 5(c) shows an example of mapping.

Aggregation, Mapping and Filtering are unary operators, i.e.
they can be used on a single edge of a DVM. One can combine
these operators to ask more complex queries involving a single
edge of a DVM, such as “what is the average sentiment of
comments containing the keyword ‘google’?” In this example,
one would have a filtering operator to select the comments that
contain the keyword google, followed by a mapping operator
to transform a comment to a sentiment value, followed by an
aggregation operator to compute the average of the sentiments.

B. rollupJoin Operator

While one can compute the number of friends per custID
using transformation operators, s/he cannot compute the total
amount of transactions per custID. To do so, s/he has to first
associate amounts to a custID, by replacing each transID
mapped to a custID in the key-list structure KL(custID →
transID) with the amount(s) mapped to that transID in the
key-list structure KL(transID → amount). Figure 6 depicts
the process. This way, a new amount attribute for custID
is created (Figure 7). An aggregation operator (sum) can be
applied on this new edge custID → amount′. Queries like
these involve a path from an attribute to another one. Thus,
a join (“lookup and replace”) operator that gets two key-list
structures (representing two consecutive edges in a path in a
DVM) and produces a new one is required.

Definition 4.4: [RollupJoin] We define an operator, called
RollupJoin, which gets two key-list structures K1 and K2



Fig. 6. Lookup and replace values in a list

Fig. 7. Joining two consecutive edges to one

and returns a new key-list structure K constructed as follows:
∀k ∈ keys(K1), it adds to K a pair (k, Lk), where Lk =
⊕x∈list(k,K1)list(x,K2), ⊕ stands for list concatenation. We
denote this operator as rollUpJoin(K1,K2).

C. thetaCombine Operator

The last operator, thetaCombine, combines edges rooted
on the same node to a new edge, as in Figure 9. Consider the
query on the DVM of Figure 2: show for each custID the
age and gender if age=’25’ and gender=’F’.

In this example, the first issue has to do with projection,
i.e. combining multiple “same-domain key” key-list structures
to a new one, by concatenating same-key lists. Using edges
custID → age and custID → gender, we would like to
create a new key-list structure, where the list of each custID
is the combination (concatenation) of the corresponding age
and gender lists for that custID. Figure 8 shows the idea.
This operator is used to combine child nodes of an attribute,
whenever needed (e.g. output of a query), and conveys the
idea of projection in relational algebra.

The second issue has to do with selection. How can one
select the custIDs where age=‘25’ AND gender=‘F’?
This selection condition involves several child nodes of custID
(the key-list structures corresponding to these edges, to be pre-
cise.) Note that age and gender represent lists of values, so
some assumption has to be made on what age=‘25’ means
(e.g. all or some value in the list.) Also note that the result
of this query (selecting custIDs) is not a key-list structure,
i.e. the corresponding operation is not algebraic, which is
not desirable. Thus, this selection condition has to constraint
a key-list structure where keys represent custIDs, such as
KL(custID → transID). Of course, this selection condition
may constrain more than one key-list structures, as long as
their keys represent custIDs (in general, same key domains).

Fig. 8. Combining age and gender

Fig. 9. Intuition for thetaCombine operator
For example, it may also constrain KL(custID → friends).
The key-list structures that a selection condition constrain are
called the output key-list structures for that condition.

We define a single operator, called thetaCombine, to express
both ideas mentioned above. Figure 9 shows the big picture.
A is the root attribute, B is a new attribute and the key-list
structure K = KL(A→ B) is the result of the thetaCombine
operator. There is a list of “output” attributes O1, O2, . . . , On,
i.e. a list of output key-list structures K1,K2, . . . ,Kn that
need to be combined, as described above. There is also a list
of “selection” attributes S1, S2, . . . , Sm, corresponding to key-
list structures K ′1,K

′
2, . . . ,K

′
m, which constrains the keys of

the result, as described above. These lists of attributes may
overlap. Either lists may be empty, but not both.

Definition 4.5: [thetaCombine] Given:
• a list O of key-list structures K1,K2, . . . ,Kn, called the

output list (can be empty)
• a list S of key-list structures K ′1,K

′
2, . . . ,K

′
m, called the

selection list (can be empty)
• a boolean expression θ(k, l1, l2, . . ., lm) involving k (an

atomic value), l1, l2, . . ., lm (lists of values), called the
selection condition

we define thetaCombine, denoted as thetaCombine(O;S; θ),
which returns a key-list structure K constructed as follows:
∀k ∈ keys(K1)∩...∩keys(Kn)∩keys(K ′1)∩...∩ keys(K ′m):

if (θ(k, list(k,K ′1), . . . , list(k,K
′
m))) is true:

add a pair (k, Lk) to K, where:
if O is empty then Lk = [ ] (the empty list)
else Lk = ⊕i=1,2,...,nlist(k,Ki)

This definition takes the intersection of the keys of the
involved key-list structures as the set of keys of the result (kind
of inner join). One can define other versions of this operator,
e.g. taking the union of the keys of key-list structures in O.

V. QUERY EVALUATION & OPTIMIZATION

A DVM is a virtual schema and we assume no material-
ization of key-list structures. When a user defines a dataframe



query Q, the data processing tasks of Q’s edges are executed
and the corresponding key-list structures are populated. Mate-
rialized edges can be used, if exist.

A. Query Evaluation

A dataframe query is evaluated bottom-up by combin-
ing outgoing edges of a node (except the root) using
thetaCombine and joining adjacent edges in a path using
rollupJoin. An edge can be transformed by a series of trans-
formation operators. Outgoing edges of the root are combined
either by creating a dataframe row for each key, in which
case the result is a traditional dataframe structure as defined
in Python or R (i.e. a cell can be an atomic value or a list), or
by using thetaCombine, in which case the result is a key-list
structure. In the latter, the dataframe can be represented in the
DVM as a mapping between the root and a new node, i.e the
result is algebraic. Algorithm 1 evaluates a dataframe Q.

The function keyCombine(A,B1, B2, . . . , Bn) defines the
key set of the new edge by combining the key sets of the
involved edges, A→ B1, A→ B2,..., A→ Bn, according to
the discussion of Section IV-C. The function applyTransfor-
mations(A, B) applies one more transformation operators on
A → B according to the transformations string of that edge.
The function rollupJoin(A,B,C) applies the rollupJoin
operator on edges A → B and B → C. The function
thetaCombine(B,C1, ...,Cm) implements the thetaCombine
operator for edges B → C1, ..., B → Cm. The output list of
the operator includes all edges B→C such that C.output is
‘true’ (may be empty). The selection condition is that of B.

Algorithm 1 produces a dataframe structure, i.e. it is not
a key-list structure. This approach is chosen because most
users prefer the output in this form. However, as mentioned,
thetaCombine can be used for the root node as well. This
way, the answer can be added as a new attribute of the root.

B. Query Optimization

A dataframe query is transformed to a key-list algebraic
expression, which can then be optimized. Due to lack of space,
we only sketch these optimizations.
Optimizations during edge materialization. The key-list
structure of an edge of the query has to be materialized during
evaluation, i.e. the data processing task corresponding to the
edge has to be executed. Optimizations include:
• Caching/pre-materializing “important/frequent” edges. For

example, certain edges starting from custID or transID.
• Evaluating the edge’s transformations on-the-fly during pop-

ulation of the key-list structure. For instance, consider edge
X0→ x3 in Figure 3 of Example 3.1. During the execution
of the edge’s data processing task, for each (custID,
comment) pair read, comment can be checked whether it
contains the keyword “google”; if yes, the python function
sentmnt() is applied on it and the result is added to a
total and a counter is incremented.

Graph-related optimizations. These are optimizations re-
lated to the analysis of the tree structure and in-parallel evalu-
ation pf paths or identification of common subexpressions. As

Algorithm 1: Evaluating dataframe queries
Input: A dataframe query Q with root node R
Output: A dataframe structure DF
Execution: evalQuery(R)
evalQuery (node A) {

for each A’s child Bi {
evalChild (A, Bi);
applyTransformations (A, Bi);

}
for each k in combineKeys(A,B1, B2, . . . , Bn)

if A.selection(A,B1, B2, . . . , Bn)
write(DF, row(k, list(k,KL(A → B1)),...,

list(k,KL(A → Bn))))
}
evalChild (node A, node B) {

if B does not have children, return;
for each B’s child Ci {

evalChild(B,Ci);
applyTransformations(B,Ci);

}
// a new edge B→C′ is created
B→C′ := thetaCombine(B,C1,...,Cm);
rollupJoin(A,B,C′);

}

an example of the former, edges X0 → X1 and X0 → X2
in Figure 4 of Example 3.1 can be evaluated in parallel. For
the latter, consider edges X0 → X1, X0 → X2, X0 → X4
and X0→ X7 in Figure 4 of Example 3.2. They all involve
the edge gender → custID, which can be materialized once.
Query rewriting. These optimizations modify the
tree structure by adding/deleting/ combining edges and
redefining data processing tasks. For instance, consider
edge X0 → x1 in Figure 4 of Example 3.2. This
edge is defined by the data processing task “SELECT
custID, gender FROM Customers”. This edge can
be replaced by another edge X0→ X1′ defined by “SELECT
gender,count(custID) FROM Customers GROUP
BY custID”. As another example, consider the path
X0 → X5 → X6 in Figure 4 of Example 3.1 (assume
there is no selection condition on X5 and no X7
node), defined by “SELECT custID, transID FROM
Transactions” and “SELECT transID, amount
FROM Transactions” respectively. This path can be
replaced by another edge, X0 → X6′ defined by “SELECT
custID, sum(amount) FROM Transactions
GROUP BY custID”.
Algebraic optimizations. This set of optimizations include
equivalent algebraic expressions and alternative/efficient oper-
ators’ implementations, as in relational frameworks.

VI. CASE STUDY AND EXPERIMENTS

We use a publicly available dataset and a novel tool imple-
menting and utilizing DVMs, called DataMingler [12], [13],
to demonstrate the potential of DVMs in on-demand and agile
modeling as well as simple and efficient querying. We develop
a DVM on top of the underlying data infrastructure, which is
then used to express a complex dataframe query. We compare



this approach vs a Python-based implementation of the same
query in terms of performance, simplicity in query formulation
and maintenance. Supplementary material can be found in [1].

A. DataMingler: A Tool for DVMs

DataMingler is a prototype GUI tool to (a) define and
manage DVMs, (b) express dataframe queries in a visual and
intuitive way, and (c) materialize the DVM (or parts of it) in
other logical models – currently only JSON is supported.

Data Canvas is the module that enables the creation and
manipulation of a DVM by mapping data and processes onto
the graph and extending it with new nodes and edges. The data
source types that DataMingler currently handles are: relational
databases, csv files, excel and stand-alone programs (Java and
Python). A DVM is kept in a Neo4j graph database.

Dataframe queries can be formulated either textually or
visually, using the Query Builder module. In both cases,
queries are represented in an XML-based intermediate rep-
resentation and then parsed and transformed to a key-list
algebraic expression, which is given to the optimizer and an
execution plan is generated. Redis is used as the key-value
engine for manipulating key-list structures.

The JSON Exports module can be used to instantiate model-
specific databases (currently, JSON is supported). The user
selects a node and a breadth-first-search tree rooted on this
node is defined. Then the system generates a collection of
JSON documents corresponding to this tree.

B. Data Infrastructure of the Case Study

We assume a corporate environment that analyses business
data. We use a public dataset offered by Yelp [37], which is
10.5GB uncompressed and comprises information on reviews,
users, businesses, check-ins, photos and tips in JSON format.
Each file is composed of a single object type, one JSON-object
per-line. Beyond the Yelp dataset, we use synthetic data to
create relational and non-relational data sources. We briefly
describe the data sources used:
Relational data. We create a relational database by using
views that contained each single-line object, and later splitting
them into its components (columns/ attributes) using the
OPENJSON function [38], and inserting into the following
tables: ‘business’ (160,585 rows), which contains business
data including location data, attributes and categories; ‘user’
(2,189,457 rows), including the friend mapping and all the
metadata associated with the user; ‘checkin’(18,641,929 rows),
regarding the check-ins on a business; and ‘tip’ (1,162,119),
with tips written by a user on a business.
Non-relational data. We maintain Yelp ‘Review’ as a non-
relational data source in JSON format, which contains in
total 8,635,403 reviews, 6.8 GBs. Furthermore, we create
a spreadsheet (Excel) containing synthetic pricing data. We
create randomised data in predefined business metrics relevant
to Yelp, that amount to an annual revenue per business. We fill
out information such as total ads and cost per click, to make a
realistic measurement to revenue by ads per business. Then, we

utilize Yelp’s known revenue streams such as advertising part-
ner program, yelp deals, gift certificates, yelp verified license
and full service program. Those are summed to an annual
revenue per business, which would presumably highlight the
most important clients in Yelp’s department.
Data produced by programs. We create a program that
performs Sentiment Analysis. In order to predict the sentiment
of a specific review, and subsequently aggregate it for each
business, an NLP model is trained, using Count Vectorizer and
Naive Bayes [15], [26]. The data is the review text and the rat-
ing, which is transformed from a numerical range ([1, 5] with
0.5 step) into binary {0, 1} as follows: the stars in the range
[1, 3) are considered negative, while the stars in the range [3, 5]
are considered positive. A script loads the model and predicts
the sentiment of each review. The model outputs (businessID,
sentimentValue) for each review, where sentimentValue can
have the values ‘POSITIVE’, ‘NEGATIVE’.

C. Building the DVM

Data Canvas is the module of DataMingler that allows the
creation and manipulation of a DVM. It lists on the left pane
all available data sources (e.g. relational databases, csv files,
spreadsheets, programs) and displays on the right pane the
DVM being built. An edge between nodes of the DVM is
defined via the use of a data source: the user specifies (a) the
column/output position in the data source that corresponds
to the head node of the edge (the root attribute) and, (b)
the column/output position in the data source that correspond
to the tail node of the edge (the child attribute). If these
nodes do not already exist in the DVM, they are created. The
required data processing task for this edge (an SQL query, a
spreadsheet reader, etc.) is automatically derived and attached
to the edge between the nodes. The tool supports multiple
edge definitions between the same root node and multiple
child nodes. Figure 11 shows the DVM built using the data
processing tasks shown in the figure. Sources S1, S2, S3, and
S4 correspond to the relational database, the Excel spreadsheet,
the program that outputs the prediction model, and a JSON
reader of the “Review” data, respectively. The DVM was built
within minutes and it is well-understood by the non-DB expert.

D. A Dataframe Example

We consider a dataframe query with several types of infor-
mation per businness id which can be input to ML algorithms.

Example 6.1: For each business_id we want to have
(a) a list of the tips related to the business, (b) the count of
positive reviews (labeled as such by the prediction model), (c)
the count of negative reviews (labeled as such by the prediction
model), (d) the count of reviews made by “elite” users, (e) the
annual_review, and (f) the average annual_review of
same-star businesses.

Column (a) consists of a list of tips found in the ‘Tip’ table,
described as succinct, witty comments on businesses, usually
related to advice fellow Yelp users. This lists can be used
for subsequent NLP analysis. Columns (b) and (c) contain
aggregate review sentiment metrics for each business, based on



Fig. 10. The DVM query of the case study

Fig. 11. The DVM for the case study

the pre-trained NLP review sentiment analysis, which is useful
in the businesses’ quest for marketing dominance. Column
(d) concerns the count of reviews by elite users per business.
This metric is useful due to the increased weight of an elite
user’s review in the microcosm of the Yelp website. Finally,
columns (e) and (f) examine the annual business revenue per
business_id, and the average business revenue of its star-
category. This enables the analysis of the relationship between
the stars and revenue and allows the comparison between the
revenue of a business and its star-ranking segment.

We implement this query using DataMingler and Python.
1) Dataframing using DataMingler: Query Builder is the

module of DataMingler for visual expression of dataframe
queries. Recall that a dataframe query is a tree defined using
DVM’s nodes. The root is the first column (the key) of the
dataframe and can be any node of the DVM. Additional
columns of the dataframe correspond to nodes reachable by
the root. The left pane of Query Builder shows the DVM as
available nodes to add in the query, shown in the right pane.

Now consider the query of Example 6.1 (use Figure 10
as reference.) The first node to add is business_id, which
becomes the root of the query (automatically named as ‘X000’
by the system). Clicking on ‘X000’, DataMingler shows all
adjacent to business_id DVM’s nodes as available to add

in the dataframe query. Since we want to know the tips for
that business, we select the tip_text node from the DVM,
placed in the query as node ‘X001’.

Then we want to know the count of positive reviews (labeled
as such by the prediction model.) We once again click on
‘X000’ node and select the sent_value node, which is
placed as node ‘X002’ in the query being built. The list of
sentiment values represented by node ‘X002’ has to be filtered
to contain only ‘POSITIVE’ values and then aggregated. Users
can specify one or more transformations on a node, by double-
clicking on the edge connecting the node and its parent (in
our case clicking on the ‘X000 → X002’ edge and defining
two transformations, ‘‘filter:$X002$==’POSITIVE’
’’ and ‘‘aggregate:count’’.)

Continuing in the same fashion, we construct the dataframe
query shown in Figure 10, annotated with all transfor-
mations and node selections. An interesting branch is the
X000 → X008 → X009 → X010, which matches each
business_id with its star-rating, backtracking then to
match this star-rating with all business_ids and their
annual_revenue. This navigational querying formulation
style makes expression of a sequence of joins and transfor-
mations conceptually simple. We argue that the presence of
a DVM and a visual query interface such as QueryBuilder
simplifies the expression of complex and conceptually difficult
queries and is thus appropriate for DB-illiterate people.

The algebraic expression for this query is shown below:
Top-Level-Dataframing (

KL(X000→X001),

Aggr(Filter(KL(X000→X002),$X002$==’POSITIVE’), count()),

Aggr(Filter(KL(X000→X003),$X003$==’NEGATIVE’), count()),

Aggr(rollupJoin(KL(X000→X004), thetaCombine

(;rollupJoin(KL(X004→X005), thetaCombine

(;KL(X005→X006);$X006$!=’’));true)),count()),

KL(X000→X007),

Aggr(rollupJoin(KL(X000→X008),rollupJoin

(KL(X008→X009),KL(X009→X010))), average()) )

2) Using Python: In the absence of DVM, the programmer
has to connect to the various data sources and treat each one
separately. Note that each new Python program will have to
replicate this step, which is non-trivial. Writing in Python the
dataframe query of Example 6.1 requires the combination of
the output of four queries into a single composite dataframe.
Query 1. The first query concerns the ‘Tip’ table. The
implementation weighted heavily in SQL optimizations and,
as such, it is mostly SQL code, executed through Python and
the PYODBC library. The SQL query uses the FOR XML
PATH clause to create a semicolon-separated list of tips.
Query 2. The data source is the output of the sentiment
analysis Python script, with rows equaling the number of
reviews and the columns being the business_id (business
being reviewed) and the sentiment value (‘POSITIVE’ or
‘NEGATIVE’) of the specific review. The sentiment analysis
script is executed and its output is decoded and split into
a string that can be analysed by Pandas. A dataframe that
contains every business_id and the calculated number of



positive and negative reviews is created.
Query 3. The third query counts reviews by elite users per
business. The user_ids of elite users are fetched from the
database and a dataframe that contains all business_ids
and the respective count of elite reviews is created. The JSON
file with reviews is accessed and read in chunks. For each
chunk, we filter the reviews by their respective user_id
and then select the business_ids of the filtered reviews.
The count of elite reviews for each such business_id is
computed, which is then added to the final dataframe.
Query 4. The fourth query examines the annual business
revenue per business_id, and the average business revenue
of its star-category, with the star categories being 9, ranging
from 1 to 5 in half-star increments. This query uses data
from the Excel sheet and the database, combined with the
existing dataframes in the program. The business ids and
respective revenues are loaded from the Excel file, followed by
the business ids and respective stars, from the database. The
average revenue per star category is calculated and merged
with the dataframe that contains the business id, revenue, and
star category, with the latter as a key.

E. Experimental Results

1) Effectiveness of DVM in the implementation of
dataframes: Our experience with the described case study
and beyond has shown us the benefits of using DVMs as
a systematic way of defining agilely and on-demand data
models and creating easily and intuitively DVM queries that
implement dataframes. Specifically, our observations are:
The curse of programming. The Python dataframe code
needed substantial design to be broken down in sub-queries.
It was imperative to employ expert Python programmers to
produce a highly optimized code. The programmers needed to
study extensively the source schemas to define the workflow
of the dataframe. This required substantial human effort, with
the time and cost this comes with. Oppositely, employing
DataMingler to create the DVM and the DVM query was
extremely fast and easy: The DVM is produced automatically
based on the available data processing tasks; for the specific
study only a very small number of data processing tasks was
necessary to be defined. The DVM query, designed visually on
the DVM, while being a tree with only two levels and a few
nodes, encapsulated all the complexity of the query workflow.
It is apparent that a person that is not a data management
expert, or a programmer, can easily define the DVM query.
The bliss of re-usage and extensibility. Let us assume that on
the same sources we want to issue a new dataframe, similar to
the one already implemented. For example, the new dataframe
asks for (a) a couple of more columns in the result or, (b)
the same information per user id rather than per buisiness id.
Naturally, the first dataframe in Python is not documented and
it is extremely hard to re-use or extend it for programming
either (a) or (b), which would need to be designed from
scratch. Yet, by employing DataMingler, adding a few more
columns necessitates adding the respective data processing
tasks and nodes to the DVM and adding these nodes with

Query Dataframe 
in DVM 

Dataframe in 
Python

Gain of DVM 
Dataframe (%)

Tips List 3.49 !"#$% 22.78%

Sum of Elite Reviews 27.42 "&!#&% 4.80%

Revenues 8.37 $!#'$ 26.30%

Sentiment Analysis 2069.18 ()%$#%$ 51.43%

Joining 0.83 2.86 29.02%

Total 2110.15 4,644.98 45.43%

Execution Time Results (in seconds)

Fig. 12. Execution times

the appropriate transformations in the DVM query. Moreover,
for the (b) dataframe it suffices to express almost the same
simple DVM query using a different node as the root.

2) Performance results: DVM’s algebraic implementation:
A Java program was written based on DataMingler’s evalua-
tion engine using the algebraic expression of Section VI-D1,
with three hand written optimizations: (a) the external Redis
key-value store was replaced with a native Java key-value store
client, (b) evaluation of X000→X002 and X000→X003 edges
were coalesced in one pass, with filtering and aggregation
executed on the fly (while reading the program’s output), and
(c) the evaluation of X008→X009 edge was “decorrelated”,
i.e. a list of business_ids is computed for each distinct
value in X008 nodes (i.e. for each star) and not for all
instances. Parallel evaluation was not employed.

Python implementation: the Python code contains multiple
optimizations to minimize execution time as much as possible,
by utilizing the optimizations of libraries (mainly using Pandas
functions that reduce complexity by multiple factors.) The
code contains as few ‘for’ loops as possible.

Figure 12 shows the execution time for the dataframe, in
total and broken down for each sub-query. As mentioned, the
dataframe is programmed in Python (which is the language
used widely for the development of dataframes) and is also
implemented via DataMingler in Java1. We observe that the
execution time of the DVM query is considerably shorter that
the execution time of Python dataframe, for each sub-query
and in total, reaching an overall gain of 50%. This result is
due to two factors: (a) DataMingler performs systematic opti-
mizations for the execution of operators and, (b) DataMingler
benefits from the fact that Java is a semi-compiled language
whereas Python is an interpreted one.

VII. RELATED WORK

Classical data integration deals with the definition of a
mediated, global, schema on top of heterogeneous relational
data sources using a mapping between the global and the local
schemata [17]. Answering queries using views [21] aim to
retrieving data and optimizing the query. Data exchange [23]
aims to transform data from a source to a target schema
based on mappings with a focuson the existence of a solution.
In both problems query containment and equivalence are of
great importance and investigated with respect to the open and
closed world assumption. Our attention is not on the original

1The experiments run on a PC with Processor AMD Ryzen 5 2500U -
2GHz- 8 logical Cores, Ram 8GB, Disk SSD LITEON CV8-8E128-HP.



queries, neither with respect to definition, nor evaluation. Find-
ing alternative queries to extract data, determining the query
equivalence, assessing data quality or performing optimization,
is also out the scope of building a DVM.

Virtual Knowledge Graphs [27] focus on mapping defi-
nition [8] with a balanced trade-off of expressiveness and
complexity. The W3C proposed OWL 2.0 [28] based on DL-
Lite [6], [7]. Many techniques perform semantic reasoning
and inference [25] using an ontology, or create the ontologies
incrementally [3], [24], [36]. Tools that serve this purpose are
Protégé [29] RacerPro [30], FaCT++ [18] and HermiT [22].
Oppositely to OWL 2.0 and semantic reasoners, DVM is
not meant for expression of complex conceptual relations or
reasoning. Thus, we do not focus in defining sophisticated
mappings and balancing expressiveness with complexity.

RDFS [31] offers classes employing RDF. Works like [5],
[20] create structured summaries or query RDF sources. Cre-
ating new querying techniques or expressive data summariza-
tions is out of the scope of the DVM. Other works, like [35],
[32], construct bottom-up an RDF graph from a relational
schema. The work in [19] designs an ER model based on
RDFS. Such works are orthogonal to ours, as they assume as
starting point a given relational schema and goal the schema
translation into RDF (via the employment of ontologies).

A system that supports query processing across hetero-
geneous data models by federating data stores [33] can be
classified as a federated database, a polyglot, a multistore or
a polystore [34]. Our work is motivated by similar concerns
and could be considered a multistore.

VIII. CONCLUSIONS

DVM is a novel graph-based model that depicts data and
processes of an organization at a higher level. The DVM
offers an intuitive way for conceptual representation of data
and is amenable to visual manipulations. It is built agilely,
on-demand and bottom-up and can be reoriented around any
attribute that becomes the focus of study. Non-DB experts
can express complex dataframe queries, which are evaluated
within an algebraic framework. We use DataMingler, which
implements the DVM, enables visual and textual definition
of dataframe queries, and materializes re-orientations of the
DVM in JSON, in a case-study showing the benefits of DVMs.
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